INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 5527-5543

Rapid indentation of a pre-stressed hyper-elastic half-space:
comparison of axially symmetric and plane strain cases

L.M. Brock *

Department of Mechanical Engineering, University of Kentucky, 521 CRMS Building, Lexington Campus, Lexington, KY 40506-0108,
USA

Received 21 June 2000; in revised form 4 October 2000

Abstract

Transient indentation of a pre-stressed hyper-elastic half-space by either a rigid smooth cone or by a rigid smooth
wedge of infinite length is considered. The former represents the basis for an axially symmetric problem, the latter, for
one of plane strain. The half-space is modeled as an isotropic compressible neo-Hookean material, and both cases are
treated as the superposition of infinitesimal deformations upon (possibly) finite deformations due to pre-stress.

The equations for the superposed deformations exhibit the usual anisotropy induced by pre-stress, but exact ex-
pressions for the full infinitesimal fields, as well as for the dilatational, rotational and Rayleigh wave speeds in the
deformed configuration, are obtained.

These demonstrate some effects of pre-stress: in particular, critical tensile pre-stress levels exist beyond which neg-
ative Poisson effects arise. Critical compressive pre-stresses also exist beyond which Rayleigh waves disappear and
contact zone expansion at constant sub-critical rates cannot occur. However, the critical compressive pre-stress level is
lower for the plane strain case and, indeed, this case is found to be in many respects more sensitive than the axially
symmetric case to pre-stress. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Insight into the indentation of pre-stressed hyper-elastic solids has been obtained by treating the process
as the superposition of infinitesimal deformations upon the (possibly) finite deformations due to pre-stress
(Green and Zerna, 1968). Beatty and Usmani (1975), in particular, used such an approach for rigid smooth
punches and materials of the Hadamard type. Both analyses were static, and specific results given for
axially symmetric cases. In both instances, the equations governing the infinitesimal deformations satisfied
equations similar in form to those for a non-isotropic body, although the hyper-elastic solid was isotropic in
the rest configuration. More recently, Brock (1999b, 2001) used the superposition approach to treat sliding
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indentation by rigid punches on an isotropic compressible neo-Hookean material. In these instances, the
analyses were steady-state dynamic, and plane-strain situations were considered.

The present study extends aspects of all these analyses in order to examine how the types of pre-stress
affects solution behavior under dynamic conditions. Examples of both the transient problem of pure in-
dentation by a rigid smooth axially symmetric cone and the corresponding plane-strain problem of a wedge
of infinite length are considered. The material treated by Brock (1999b, 2001) is again chosen to represent
hyper-elastic behavior, and the contact zones expand at constant sub-critical rates. Constant expansion
rates give rise to homogeneity in the independent variables for the superposed infinitesimal deformations, a
feature that is regularly exploited in linear elastic indentation studies (Willis, 1973; Brock, 1978).

The present study begins in Section 2 with basic equations for the superposition scheme, adopted from
formulations by Beatty and Usmani (1975). The particular isotropic compressible neo-Hookean material is
defined, and the plain strain and axially symmetric cases are addressed and exact transient solutions for the
full field obtained, in sequence.

Both solutions show that compressive pre-stress beyond a critical value precludes the existence of
Rayleigh waves and also, therefore, indentation for contact zones with sub-critical expansion rates.
Moreover, all wave speeds (rotational, dilatational, Rayleigh) and the average contact zone stress in both
cases are clearly influenced by pre-stress, and the effects differ in tension and compression. However, the
effective elastic constants in the governing equations for the superposed infinitesimal deformations in the
two cases are different, so that the pre-stress effects are different — sometimes in basic ways. Such differences
also mean that the axially symmetric case does not follow directly from the plain-strain case by standard
(Barber, 1996) superposition operations.

2. Basic equations

Consider an elastic body R that is homogeneous and isotropic relative to an undisturbed reference
configuration xy. A smooth motion x = x(X) then takes R to a deformed equilibrium configuration k. The
Cauchy stress T in « is
_ 0x
- 0X
where (o, o1, o) are scalar-valued response functions of the principal invariants (I, II, III) of B, and body
forces are absent. As noted by Beatty and Usmani (1975), experimentally based inequalities (Truesdell and
Noll, 1965) tend to support the restrictions

oy — oy < 0, oy + Loy > 0, o0 <0 (22)

T = oyl + o,B + 1,B?, B = FF', F (2.1)

An adjacent non-equilibrium configuration k* is obtained by superposing an additional, but infinitesimal,
displacement u, which depends on x and time. This requires an additional (incremental) Cauchy stress
T =T — T, where T" is the Cauchy stress in x*. To the first order in the displacement gradient H = du/0x,
the components of T’ in the principal reference system, i.e. F gives B=diag{/], 13, 1:} where J, are the
principal stretches and

I=Ji+/+7, =845+ i4h+245k, =15, (2.3)
can be written as
T, /1/11 + 24, 1,12 )”/13 Hy

Ty | = /“:21 7S +, 2ty ) 7S H (2.4a)
2 ;
T3 /31 A3 Ay + 205 | | H3s
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T1,2 = /‘/21H21 + ,u,lelb T2/3 = #/32H32 =+ .‘1/231—1237 T3/1 = /1,13H13 + /1/31H31 (2.4b)
In Egs. (2.4a) and (2.4b) the (4, i) are generalized Lame’ constants defined by
ry=ry)i, Th=Tnk3, Th=Is4 (2.5)
where i = (1,2, 3), the symbol I' represents either 4 or u, and

6062

60(0
12
oAy

o5

60(1

1 , ,
5 Aik = + i,-z =+ i? Mig = My = 0 =+ 002 (’%2 + /“/%) (2.6)
2 oAy

In x incremental traction boundary conditions on a surface with outwardly directed normal n can be

written in terms of the traction vector
t"”) = T'n 4 Tn(n.Hn) — TH'n (2.7)

Finally, because k, is a homogeneous configuration, the incremental balance of linear momentum reduces
to (Green and Zerna, 1968)

divT = pii (2.8)

where p is the mass density and the dot overhead denotes the (absolute) time derivative.
Consider a Hadamard material, which is characterized by the response functions

dG(III) 1 bo
oy = 2VvIII , o = ay — 1by), 0 = —— 2.9
0 dIll ! \/HI( 0~ Ibo) > VI 29)

where (ag, by) are material constants such that by = ay — i, p is the usual (Hibbeler, 2000) shear modulus
and G(1)=0. Setting by = 0 produces the sub-class of neo-Hookean materials. In this article, the com-
pressible case is treated; incompressibility would require that III=1 for all deformations. A particularly
simple isotropic compressible neo-Hookean material arises when

G:G()(\/%—l) (2.10)

where Gy is a constant. Then Eq. (2.9) produces

Gy I3

20 S =0 2.11
1’ o \/m ) L%) ( )
To obtain G, consider R to be a bar of uniform circular cross-sectional area 4, in k, that is placed in a
deformed equilibrium state x under the uniaxial load P. If the bar axis is aligned with the X;-direction, then
the Cauchy stresses for R are

P
T11:2, I =T =0, Tu=0 (i#k) (2.12)

Oy = —

where A is the cross-sectional area in k, and uniform stress is assumed. Clearly the X are principal axes with
stretches 2; and 4, = 13 = A7, and Egs. (2.1), (2.3) and (2.11) combine to give the formulas

P W32 1 Go 4
Y Ol Ar = — 2.13
pA Go ' A’ ! Uiy (2.13)

Because 4 = /IZTAO for homogeneous deformation, and 4; = 1 + ¢, where e, is the axial unit extension of the
bar, Eq. (2.13) gives
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G, 1
lde -y |2~ 2.14
S R e +e1)3/2] 214

Eq. (2.14) relates a first Piola—Kirchoff stress to unit extension, and the right-hand side will appropriately
vanish for e; = 0 when

Gy=p (2.15)

P

Aioi

Thus, Eq. (2.11) defines a one-parameter solid, and the restriction set (2.2) is indeed satisfied. A schematic
of Eq. (2.14) in view of Eq. (2.15) is given in Fig. 1, i.e. Fig. 1 represents the stress—strain curve for the
material. The effective Young’s modulus £° and Poisson’s ratio v¢ then follow from Egs. (2.5)—(2.7) and the
slope of Eq. (2.14) as
e , 1/4
By -, w=-2 I_(+e) 141 (2.16)
Il 2(14e))” =1 e(l+e)”

Clearly E° — u for large extensions, but the behavior E¢ ~ 2.5u for small extensions corresponds to a
Young’s modulus in an isotropic linear elastic solid with Poisson’s ratio 1/4 (Hibbeler, 2000). Indeed, Eq.
(2.16) indicates that v° takes on that value when e¢; ~ 0.

3. Indentation problem: plain strain case

Consider that R in xy occupies a half-space defined in terms of a fixed Cartesian basis as the region
X5 > 0. The smooth motion

2.5u

'

-1.0

Fig. 1. Compressible neo-Hookean stress—strain curve (uniaxial loading).
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X1 = /lle, Xy = /12X2, X3 = X3 (31)
takes R to the plane-strain equilibrium state x defined by

T11 =0, T22 = 0, 13 =1 (32)

where ¢ is a known constant stress. Clearly R now occupies the half-space x, > 0, and (x, 4;) are the
principal coordinates and stretches. For the compressible neo-Hookean model (2.11) and (2.15) considered
here, Egs. (2.1), (2.3), (3.1) and (3.2) combine to produce the results

1 , o o\’
}uz :W’ il:a)/LQ’ CO:Z—F 1+ (ﬂ) (332\.)
1 1
T33:#<\/5—w>> Tr=0 (i#k) (3.3b)

required to complete the description of R in x. In Egs. (3.3a) and (3.3b) it is noted that 0 < w < 1(¢ <0)
and w = 1(c = 0).

For any superposed infinitesimal deformation ¥ — k* of R, the incremental stresses are given by Egs.
(2.4a) and (2.4b) where, in view on Egs. (2.5), (2.6), (2.11), (2.15), (3.2), (3.3a) and (3.3b)

! 2 / H "t 2 1 U
}'lk::u<5_w>7 ;~21<::“22:5a Ask:ﬂ(a_ﬁ)v W = po, ﬂ;a:\/_a (3.4)

Here k£ = (1,2,3) and all constants in Eq. (3.4) are positive so long as

O<w<\/§<a<%) (3.5)

In the present instance, the infinitesimal deformation occurs when a smooth rigid punch of infinite length
and invariant wedge-like profile in the x3;-direction is pressed into the half-space surface x, = 0 at a constant
speed. The wedge apex meets the surface along the line (x;,x,) = 0 and a contact zone spreads symmet-
rically with constant sub-critical speed along x, = 0. A schematic is given in Fig. 2, where s = v,(time) is the
temporal variable, and the constants (C,¢) are, respectively, the wedge speed and contact zone expansion
rate, each divided by v,. Here

Cv,

|

Fig. 2. Schematic of indentation process.
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u
Ve ; (3.6)
is the rest value of the rotational wave speed in a linear elastic solid (Achenbach, 1973), so that s has the
dimensions of length, and (C,¢) are dimensionless. For the moment (3.6) is taken as the critical contact
zone expansion rate. Thus, while ¢ is a priori unknown, we require that 0 < ¢ < 1. Fig. 2 also shows that
s = 0 defines the instant of initial contact and that, for convenience, the coordinates (x,y,z) are used in
place of (xy,x2,x3).
The boundary conditions for the superposed infinitesimal deformations along y =0 can then be written
as

2 = 0(|x| > cs); A =47 =0, uy = Cs —lx| (|x] <es) (3.7)

As depicted in Fig. 2, t/2 —  is the wedge half-angle, where  is assumed to be small enough to justify the
approximation tanys ~ . The initial conditions for y > 0 are

(WEZ;") =0 (s<0) (3.8)

where k = (1,2,3). Because the process is plane-strain, only the components (u;,u;) of the superposed
displacements arise, and these depend only on (x, y,s). Thus, in light of Eqgs. (2.4a), (2.4b), (2.8) and (3.4),
the relevant governing field equations for (y,s) > 0 for the superposed deformation are

1 2 2 2 2 2 2
18m (2 NOwm 20w 0w (3.92)
w 0y? 0x?  ® Ox0y  0Os?
2 & o? o? o?
20wm 30w 0w Ouw (3.9b)
® 0x0y o 0)? ox2  0s?

where the non-zero elements of T’ are
1 2 aul 2 6u2 1 1 6u1 3 6u2
~T,=| = — ——w)—=— ~-I,=——+—— 3.10
p ! <a)+w> 6x+<w w) ay’ u P dy (3-10a)
1 1 6u2 1 aul 1 2 1 aul @uz
~T,=-T,, =0—+— — ~Th=l—"————7—= | —+=— 3.10b
R RTEE B iy TR (w \/5)(@)6+@y) (3.100)

Eq. (3.10a) indicates that extensional strain associated with the x-direction depends only on the corre-
sponding traction component when w achieves the critical value defined by Eq. (3.5). For o exceeding that
value, Eq. (3.10a) implies a negative Poisson effect.

Moreover, Egs. (3.10a) and (3.10b) show that tr T’ and tr H are not directly proportional. This indicates
the typical (Green and Zerna, 1968; Beatty and Usmani, 1975; Brock, 1999a) result that the superposed
deformations are governed by equations analogous to those for a non-isotropic body, although ‘R in x is
isotropic.

The mixed boundary conditions along y =0 for this deformation can in view of Egs. (2.7), (3.2), (3.3a)
and (3.3b) be extracted from Eq. (3.7) as

6u2
I, —c—=0 3.11
210 o ( a)
T, =0 (]x| >cs) (3.11b)

u = Cs — x| (]x| <es) (3.11¢)
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Eqgs. (3.11a)—(3.11c¢) reflect the fact that #7? vanishes identically. In addition, we expect the 7, in Egs.
(3.10a) and (3.10b) to vanish when /x?> +y?> — oo, y > 0 for finite s > 0 and to be non-singular and
continuous everywhere except the wedge apex (x,y) = 0. This latter requirement, as well as the assumption,
implicit in Fig. 2 and Egs. (3.11a)—(3.11c¢), that multiple contact zones (Brock, 1996) do not in fact arise, can
be justified in part by the simple wedge geometry. Finally, the unilateral Signorini conditions (Georgiadis
and Barber, 1993) must hold: (a) contact zone normal stress is non-tensile, and (b) indentor and half-space
surfaces do not interpenetrate.

4. Plain strain solution candidate

Consider the simpler initial value/boundary value problem governed by Eq. (3.8) to Egs. (3.10a) and
(3.10b), but with Egs. (3.11a)—(3.11c) replaced by the unmixed conditions
Ty, —0%20, Ty, = N(x,s) (4.1)
Ox
along y = 0. Clearly, if a function N(x,s) is found such that Eqgs. (3.11b) and (3.11c), the boundedness/
continuity and Signorini conditions are satisfied, then the simpler problem solution is also that for the
infinitesimal deformations in the indentation problem. Conditions Egs. (3.11b) and (3.11¢) require, in
particular, that N (x,s) vanish for |x| > ¢s, and satisfaction of Signorini condition (b) implies continuity of
N(x,s) as |x| — cs—. In addition, the lack of a characteristic length in the indentation problem and the fact
that the only inhomogeneous condition, Eq. (3.11c), is homogeneous of degree 1 in (x,s) suggests that the
displacements everywhere are homogeneous of degree 1 in (x,y,s). We choose, therefore, a trial function
identical in form to the contact zone stress for the corresponding classical linear elastic indentation problem
(Brock, 1978):

N(x,s) = oycosh™" % (Jx| < es) (4.2)
Here oy is an unknown constant that can be shown by integration of Eq. (4.2) to be the average normal
stress on the contact zone.

Solution of the simpler problem in view of Eq. (4.2) should yield a viable candidate for the solution for
the superposed infinitesimal deformations. To this end, the unilateral (Sneddon, 1972) and bilateral (van
der Pol and Bremmer, 1950) Laplace transforms

F:/fv%& F:/ﬁwm (43)
0
are introduced, along with their corresponding inverse operations
1 I . p _
F=— [ Fe”d F=-— [ Fe'd 44
2mi / 2 2mi / 1 (44)

In Eq. (4.3), the variable p can be taken as real and positive and large enough to ensure existence of the first
term in Eq. (4.3), while ¢ is in general complex. In the second term in Eq. (4.3) integration is along the entire
x-axis; in Eq. (4.4), it is taken along Bromwich contours in, respectively, the complex p- and g-planes.
Application of Egs. (4.3), (3.9a) and (3.9b) in view of Egs. (3.8), (3.10a), (3.10b) and (4.1) gives a system of
coupled ordinary differential equations whose solution is the double transform set

u

S P = Ai(g)e ™ 4 Bilg)e (4.5)

for y > 0. Here £ = (1,2) and
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qT 2qab

A =—L g =—— TP 4.6a
1(q) PN 1(q) RV (4.6a)

a q
Ax(q) = —gAl(CI)y By(q) = 531 (9) (4.6b)

where the definitions
V3a = Vo /1 — g2, b= +w\/1 - g} (4.7a)
2 1 4 5 2

T=1-g¢g|lo+—|, R=-—qab+T (4.7b)

w W

hold. The dimensionless constants

/ 2
cp = \/6, Cqg =A\/W +6 > ¢y (48)

define the effective dilatational and rotational wave speeds (c,v,, ¢pV,), respectively, in directions parallel to
the x-axis. Boundedness of Eq. (4.5) for y > 0 requires that Re(a,b) > 0 in the g-plane with, respectively,
the branch cuts Im(g) = 0, |Re(g)| > 1/¢, and Im(g) = 0, |Re(g)| > 1/c,. Here R is a form of the classical
(Achenbach, 1973) Rayleigh function. It is analytic in the g-plane with branch cuts Im(g) =0,
1/c, < |Re(q)| < 1/cy, and exhibits the roots ¢ = £(1 /¢y, 1/cr), where

co = w—%, cR:\/w—F%(l—\%) 4.9)

For /2/v/3 —1 < ®,0 < cg < c3,1i.e. cpv, is the effective Rayleigh speed in directions parallel to the x-axis.
Thus, sub-critical contact zone expansion is defined by

0<c<cr (4.10)

ForO0<w< \/2/\/§ — 1, however, cg is imaginary, and so has no meaning as a wave speed. In light of Eq.
(4.3), this implies that Rayleigh waves do not exist for pre-stresses

o< —=2u(v3-1) \%+1 (4.11)

and that indentation in the sense of a sub-critical contact zone expansion rate cannot occur. For
0<w<1(6<0)c¢ is also imaginary, and so does not correspond to a wave speed. For 1<
w<V2 0<o< ,u/\/i), however, ¢ is real, and 0 < ¢y < cg, but it will be seen that this fact plays no role
in solution behavior.

Operation on Eq. (4.5) with the second term of Eq. (4.4) gives the unilateral Laplace transforms ;. The
analyticity of Eq. (4.5) allows the entire Im(g)-axis to serve as the Bromwich contour, with deformations
along semi-circular paths centered at the poles ¢ = £(1/¢y, 1/cr) being introduced when 0 < w < 1 and

0 < w < 1/2/4/3 — 1, respectively. In any event, the Cagniard—-deHoop (deHoop, 1960) scheme allows, in
light of exponential decay and Cauchy theory, the integrations to be taken along contours in the g-plane
such that the final inversion operation, the first term of Eq. (4.4) can be performed by inspection. The
results are that the u; can be written as the real parts of functions U, given by
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/o - f* V3(s — 1) s s— [
o0 Ui = 5 a(qa)Ak(qa)ca\/T—sgdt+ /w]b(qh)Bk(Qb)q,\/T—ﬁdt_ l/s,, b(q)Bi(qn)
(s —OH(s — 1) ( co2y>
Xt dt > —= 4.12
ot (1> (4.12)

for (y,s) > 0 and k = (1,2). Here H( ) is the Heaviside function, and it is understood that an integral
vanishes when the lower integration limit exceeds the upper. In Eq. (4.12) ¢ is a positive real variable of
integration and

riqa =—ix+ ly 9Ca \/ £ — 537 Sq = 27 re = x? + gcgyz (4133)
3 Cy 3
gy = —tx + iy ey [ 2 — 3, sp = ij ry = /X2 + wc;)? (4.13b)

1
rygn = —tx +yvoes[s =2, s =— (x| +V2y) (4.13¢)

are parameterization functions for the independent variables. Egs. (4.13a) and (4.13b) define the upper
halves of the branches of hyperbolas in the g-plane. In the isotropic limit (w = 1), r, = r, = /x> + »* and
the parameterizations reduce to classical (Achenbach, 1973) forms. The parameterization (4.13c) arises to
account for the additional contributions caused by the deformation of Eq. (4.13b) around the branch cut of
a when v2|x| > o?y.

In light of Egs. (4.8) and (4.13a), the 4;-terms are dilatational in nature, and occur in the outer ex-
panding semi-elliptical region depicted schematically in Fig. 3a, while Egs. (4.8) and (4.13Db) indicate that
the By (gy)-terms are rotational, and arise in the inner expanding semi-elliptical region in Fig. 3a. The
disturbances associated with the B;(gq,)-terms are the head (bow) wave contributions, and occur in the
wedge-shaped regions in Fig. 3a. To confirm the status of Eq. (4.12) as the full field solution for the su-
perposed infinitesimal deformations, Eq. (3.11c) and the Signorini conditions are now imposed.

5. Plane strain solution

Evaluation of (4.12) for y = 0, |x| < c¢s in view of Egs. (4.13a)—(4.13c) produces simple integrals of real-
valued functions. Introduction of the integration variable change ¢ = 1/v then gives

\ ry,,T

iQZS
y= Q2\/§s¢
y

Fig. 3. (a) Wave patterns for plain strain (2D) case. (b) Wave patterns for axially symmetric (3D) case.
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Ca O(KZ Vs — |x| b 40(2ﬁ Vs — |x|
_ P Bl o B P —d 5.1
Ucply (o)) ( )/C vD V2 — 2 vt ( )/C w?*vD V2 — 2 ! ( )

where (P) denoted Cauchy principal value integration, and

V3o = Vo /2 -2, B=Vw/c: —v? (5.2a)
K=w+l—v2, D= 1<+g Kot (5.2b)
@) @) 3w?

Because (|x|,s) are independent, substitution of Eq. (5.1) into Eq. (3.11c) gives the two equations necessary
to determine the unknowns (¢, gy). Application of Cauchy residue theory to the v-integrals allows these
equations, in fact, to be written in the compact form

272
(@,C) w1 l“‘”‘M <;d> 53)
u w
where I is the real constant

o -1 V2 + 0?2
*  du (@ =1 + o) Va2 + 2 + ou?
o ViZ+ dJovo + uNo? + 2+ o — V3(0? + 1+ ou?)’
The result (5.4) can be manipulated to give a linear combination of complete elliptic integrals, but little
computational or analytical advantage is gained. It should also be noted that the common factor in Eq.
(5.3) is indeed finite in the limit as « = 1. It can be shown for 1/2/v/3 — 1 <  that Eq. (5.3) gives gy < 0.

Thus, Eq. (4.2) satisfies Signorini condition (a). Evaluation of Eq. (4.12) for y = 0, ¢s < |x| < cgrs gives a
result similar in form to Eq. (5.1), except that the lower integration limits are now |x|/s. Allowing |x| — cs+
in this expression shows that Signorini condition (b) is also satisfied.

(5.4)

6. Indentation problem: axially symmetric case

Consider now that R in ko undergoes the smooth motion
x1 = AXq, Xy = QX>, x3 = AX;3 (6.1)
into the equilibrium principal stress state k defined by
TWw=Ts=0, Tn=0 (6-2)

where ¢ is a known constant stress. The generalized neo-Hookean model formulas (2.11) and (2.15) now
give in light of Eq. (2.1) and Egs. (2.4a) and (2.4b) the results
1 s 1 0o

s Q —§+;:0, T =0 (i#k) (6.3)

A
required to complete the description of R in k. It is convenient here to use the stretch Q as a pre-stress
parameter instead of the ratio of stretches w employed in the plane strain formulas (3.3a) and (3.3b). It is
also noted that, unlike w, Q is the root of a fifth-order polynomial in the second term of Eq. (6.3). Nev-
ertheless, it can be shown that this polynomial exhibits only one positive real root for ¢ # 0, and that
0<Q2<1(6=0)and 2>=1 (6<0).
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For any superposed infinitesimal deformation x — x* of ‘R, the incremental stresses are again given by
Egs. (2.4a) and (2.4b), where now Egs. (2.5), (2.6), (2.11), (2.15) and (6.3) give

(6.4)

Ol=

1
My = Ay = <Q4 - m) o = oy = 2, My = Mz =
Here k£ = (1,2,3), and all constants are positive so long as

1 p
Q>57 (7<35) (6.5)

The infinitesimal deformations now occur when a smooth rigid cone is pressed into the half-space surface
x, =0 at a constant speed. The cone tip meets the surface at the point (x;,x3) =0 and a contact zone
spreads in an axially symmetric fashion at a constant sub-critical rate. The schematic in Fig. 2 also suffices
to represent this process by showing a typical cross-section, in this case, the x; = 0 plane. The parameters
(s,¢,C) retain their previous definitions, therefore, with 0 < ¢ < 1 being understood for the moment to
define sub-critical contact zone expansion. Moreover, the variables (x,y,z) are used in place of (x1,x,x3).
For purposes of generality, the axially symmetric nature of the process is not at this point fully exploited.
Therefore, the boundary conditions for the infinitesimal deformations along y =0 are written as

2 = 0(r > cs); ti 2= t; =0, Uy =Cs —yr (r<ecs) (6.6)

where r = /x> 4+ z> and /2 — y is the cone half-angle. Again, the approximation tany =~ y is assumed
valid. The initial conditions (3.8) are again valid, but the field equations governing the superposed de-
formations for (y,s) > 0 are now

[(294 —) 6622+Q 66; +é§—; aazz]uurzg“aax (%‘;Haa”;) 0 (6.7a)
[é:—zﬁg 8622 (294—&—5)66—:2—66—;}1434-294%(%4-%?)=0 (6.7¢)
where the constitutive formulas
%T{l = <2Q4 E) aam + (29“ - —) (aat;z +%) (6.8a)
%T2’2:3Q4%1;2+Q4<%+%) (6.8b)
%T3,3 = <2Q4 Q) aa”: (294 —) <%+%> (6.8¢)
o= T e (6:34)
%ng Lo~ %”3 ;2 aa”; (6.8¢)
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1 1 1 aul 6u3

_T/ :_T/ —— _ _ 2 68f

'u31 'u13 Q(@z+6x) ( )
hold. Eqs. (6.8a) and (6.8c) indicate that extensional strains associated with the (x, z)-directions depend only
on the corresponding stress components when Q achieves the critical value defined in Eq. (6.5). For Q below
that value, Egs. (6.8a) and (6.8¢c) imply negative Poisson effects. It is seen that tr T" and tr H are again not
proportional, i.e. the isotropy of R in xq is lost in the equations for the superposed infinitesimal defor-
mations.

In this case, the more explicit conditions for y = 0 are
" 6u2 auz

T21 —U§:TZ/3—O’§:0,
The Tj, are expected to vanish when /x> +)?>+z> — oo, y > 0 for finite s > 0, and be non-singular
everywhere except the cone tip (x,y,z) = 0. In addition, the Signorini conditions (a) and (b) must be satisfied.

T, =0 (r > cs), uy = Cs —yr (r < cs) (6.9)

7. Axially symmetric solution candidate

The simpler problem for the candidate solution now has the unmixed conditions

Qu Qu
o =Th—og =0, Tp=N(s) (7.1)

along y = 0 in place of Eq. (6.9), where

7
I, —o

N(r,s) = gy cosh™! < (r<cs) (7.2)
r

The form (7.2) is similar to Eq. (4.2), and has the same spatial variation as the contact zone stress for the
corresponding static problem (Harding and Sneddon, 1945). Construction of the candidate solution is
again accomplished by transform methods, but the bilateral transform, the second term of Eq. (4.3) and its
inverse, the second term of Eq. (4.4) are replaced by the multi-variable operations

15'://Iz%efp(qwﬁqsﬂdxdz7 (7.3a)

S 4 : aP(q13+432)
F-(zm,> / / Fer dg1dgs (7.3b)

where (¢, ¢3) are in general complex. Application of the first term of Eq. (4.3) and Eq. (7.3a) to Egs. (6.7a)—
(6.7c) in view of Egs. (7.1), (7.2), (6.8a)—(6.8f) and (3.8) gives the multiple transforms

Qb pay _
2:;020_01)4% = qid(q)e™ + qiB(q)e™ (k=1,3) (7.4a)
#94 4 ~ —pay q —pby
SncogP T2 = —adlg)e™ £ Blg)e (7.4b)

for y > 0. Here

T 2ab
A =—  Blg)=-—— " 2 — g+ g? )
(q) R(l _ qzc2) ) (q) R(l _ qzcz) ) q ql + q3 (7 5)

and the definitions
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@*V3a=\/1- ¢, Qb= /1 - g (7.6a)

T =1-¢ Q4—}—l ) R =4q’ab + T* (7.6b)
Q

hold. The dimensionless constants

1 1
= = 1\/=+20° 7.7
Cp \/ﬁ, C Q+ >Cb ( )

define the effective rotational and dilatational wave speeds (c,v,,c,v,), respectively, parallel to the plane
v = 0. Boundedness of Eqs. (7.4a) and (7.4b) for y > 0 requires that Re(a, ) > 0 in the g-plane with branch
cuts Im(g) =0, |[Re(q)| > 1/¢, and Im(g) = 0, |Re(q)| > 1/c;, respectively. The term R is again a form of
the classical Rayleigh function; it is analytic in the g-plane with branch cuts Im(q) =0, 1/¢, <
|[Re(q)| < 1/cp, with roots ¢ = +(1/¢o, 1/cr), where

i o, 2
Cy = E—Q, CR_\/§+Q<1_ﬁ) (78)

For0 < Q< (2/\/§ — 1)71/5 it can be shown that 0 < cg < ¢, i.€. crV, is the effective Rayleigh wave speed
parallel to the plane y = 0. Thus, sub-critical expansion is again defined by Eq. (4.10), where Eq. (7.8) now
holds. For Q > (2/+/3 — 1)71/ > however, cg is imaginary and has no meaning as a wave speed. In light of
Eq. (6.3) this implies that Rayleigh waves do not exist for pre-stresses

o<2u(%l><%l>4/5 (7.9)

and that, as in the plane strain case, sub-critical contact zone expansion cannot occur. For @ > 1 (¢ < 0) ¢
is also imaginary, and so does not correspond to a wave speed. For 2715 < Q <1 (0 < o < 27*5y),
however, ¢ is real and 0 < ¢y < cg, but plays no role in solution behavior.

Operation on Egs. (7.4a) and (7.4b) with Eq. (7.3b) and use of the Cagniard—-deHoop technique (de-
Hoop, 1960) gives, in a manner similar to that for the plane strain case, u; that are the real parts of
functions U, where

Ls (XU U3) = —/Ouadu[Qaa(qa)A(qa)Mdt /Oubdu[be(qb)B(qb)si_td,
y

20200 Ca \/ — 52 Cpr/ 2 — S%
T (s —)H(s — 1) < )
+ 1/0 du/xh Onb(qn)B(qn) /=7 r> oSG (7.10a)

n,uQ2
620_0 / du/ (9.)4(q.) \/_dt / du/ q»B( qb dt
(s—n)H(s—1) ( )
+ d/ B( de| r > 7.10b
l/ uj aiBlan) Ja-2 o\ 95\5 (7.10)

for (y,s) > 0. In Egs. (7.10a) and (7.10b) (u, t) are real variables, it is understood that integrals vanish when
the lower integration limits exceed the upper, and

=0 -, =0, q=0-u (7.11)

Here the parameterization functions are
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. CaY 1 c2y?

R2 , = —1tr+1 IZ_SZ’ sa:Ra u2+_7 Ra: r2+ 5 7.12a
G N i 30 1
20, — (Y o o _ 2, 1 _ ]y

R0y = —tr +1—5 /1> — 57, Sp = Rpy [u” + —, Ry =\[r"+—F (7.12b)

Q c, Q

I V2@
RiQh:—tr+g—§\/sﬁ—t2, sh:r’/u2+§+ — (7.12¢)

where the integration limits

2 2
K 1 s 1 | AT
ta = \/ (Ra) c? = \/ (R_h> 70_%’ i 75 207 =y (7.13)

vanish when the arguments in the radicals vanish or become negative. The schematic in Fig. 3b shows the
wave fronts associated with Egs. (7.10a) and (7.10b). The 4- and B(g,)-terms are, respectively, dilatational
and rotational in nature and arise within the outer and inner, respectively, expanding ellipsoidal regions.
The B(gq;)-terms represent head wave disturbances that arise within the expanding wedge-like toroidal
regions.

8. Axially symmetric solution

Evaluation of Eq. (7.10b) for y = 0, » < ¢s in light of Eqgs. (7.11)—(7.13) is simpler than its form suggests
because the parameterization functions (Q,, Op, Os) become both real and independent of u. Indeed, the
resulting u-integrations can now be performed explicitly, whereupon introduction of the integration vari-
able change ¢ = 1/v gives

4 Ca 2 2.2
e 7(P)/ K dV[vsln<vs+ ”1> 1/7V2S2r21
’ r r

2¢%a s vD v: —c?

[ 2 22
—(P)/ docf_dv [vsln(vs—i— v 1) _szsz_,,z]

vD v2 —¢?

s

for y =0, r < ¢s, where

QPV3u= /2 =2, @p= /2 (8.2a)

Q4K=Q4+é—v2, D:(K+2)<K2—§> (8.2b)

In contrast to its plane-strain counterpart (5.1), Eq. (8.1) does not appear to be linear in (r, s), although it is
appropriately homogeneous of degree 1. Similar forms arise in the analysis of axially symmetric crack
growth (Brock, 1991), however, and use of Cauchy residue theory shows that Eq. (8.1) is indeed linear when
r < ¢s. Substitution into the third term of Eq. (6.9) then gives the two formulas

512 >
(@,C) __V . 4Q5_M <Q3/2’C_1> (8.3)
1 -0 V142Q° 2
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necessary to find (g, c), where I is the real constant

1_/°° du (1-Q +Q)V1+2Q + Qu
o W4T+ /14297 + Q2 — V3(1 + @ + Qu2)?

The integration (8.4) can actually be performed analytically, but the resulting combination of logarithmic
and arctangent functions of (¢, Q) offer limited computational and analytical advantage. It can be shown
that the common factor in (8.3) is finite in the limit as @ = 1, and that 6y < 0 when 0 < Q < (2/+/3 — 1)71/5.
Thus, Eq. (7.2) satisfies Signorini condition (a). For y =0, ¢s < r < crs it can be shown that Eq. (8.1)
satisfies Signorini condition (b).

(8.4)

9. Comments and comparisons

To this point, the exact transient full-field solutions for two cases of indentation of pre-stressed hyper-
elastic half-spaces have been presented. The material chosen for illustration is an isotropic compressible
neo-Hookean solid, and both cases have been treated as the superposition of indentation-triggered infin-
itesimal deformations upon the (possibly) finite deformation due to pre-stress. The equations governing the
superposed deformations, Egs. (3.9a) and (3.9b) and Egs. (3.10a) and (3.10b) for plane strain and Egs.
(6.7a)—(6.7c) and Egs. (6.8a)—(6.8f) for axial symmetry, are non-isotropic in nature, and give rise to elliptical
or ellipsoidal dilatational and rotational wave patterns, and head waves in classical (Achenbach, 1973)
wedge-like regions. Moreover, the compressive contact zone stresses for the two cases are similar in form,
and lead to constant average values.

Despite these similarities, the two indentation processes are not the same and, indeed, the effective elastic
constants arising in Egs. (3.9a) and (3.9b) and Egs. (3.10a) and (3.10b) differ from those in Egs. (6.7a)—
(6.7c) and Egs. (6.8a)—(6.8f). As a manifestation of this, consider the dimensionless constants (cs, ¢, cr)
given by Egs. (4.8) and (4.9) in light of Egs. (3.3a) and (3.3b) for plane strain, and by Eqgs. (7.7) and (7.8) in
light of Eq. (6.3) for the axially symmetric case. These are associated with, respectively, the rotational,
dilatational and Rayleigh wave speeds in the deformed configuration, and are plotted vs. pre-stress in Fig.
4. There the plane strain case is denoted by 2D (broken line) and the axially symmetric cases, by 3D (solid
line). The allowable ranges of pre-stress are defined by Eqgs. (3.5) and (4.11) for the 2D case, and Egs. (6.5)
and (7.9) for the 3D case, i.e. the ranges for which the Poisson effect is not negative and Rayleigh waves
exist.

Fig. 4 shows that the Rayleigh waves exist for a substantially larger range of compressive pre-stress in
the 3D case, but that the onset of the negative Poisson effect occurs for a slightly larger tensile pre-stress in
the 2D case. The behavior of (¢, c,,cr) shows that, for both cases, compressive pre-stress increases the
dilatational wave speed, and a tensile pre-stress decreases it, while the situation is reversed for the rotational
and Rayleigh wave speeds. In the limit as the pre-stress vanishes, speeds for the two cases are identical, but
the changes in all three speeds due to pre-stress are greater for the 2D case. That is, the constraint imposed
by plane strain enhances the effects of pre-stress.

Differences in behavior are also seen for the average contact zone stresses given by Egs. (5.3) and (8.3).
In Fig. 5 these constants are plotted for the two cases over the allowable ranges of pre-stress. Again, the
values are identical in the absence of pre-stress, and both vanish when the pre-stress reaches the critical
compressive value at which Rayleigh waves disappear. The behavior for the two cases is otherwise distinct.
For the 3D case, the average contact stress drops for both tensile and compressive pre-stresses, while it
actually increases in the 2D case for tensile pre-stress. That is, for a given indentation speed and apex angle,
the constraint imposed by plane strain requires a greater average contact stress under a tensile pre-stress.
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Fig. 4. Variation of effective wave speeds with pre-stress.

Fig. 5. Variation of average contact zone stress with pre-stress.

Figs. 4 and 5 show clearly that the effects of pre-stress are small for pre-stress magnitudes small in
comparison with the shear modulus u. Indeed, the critical pre-stress values for Rayleigh wave annihilation
and negative Poisson effects are of O(u). Nevertheless, the trends indicated are important, especially in the
context of hyper-elasticity.

In regard to the analysis itself, it is convenient that the neo-Hookean model used to represent the hyper-
elastic solid gives governing equations for the superposed infinitesimal deformations whose non-isotropic
nature did not preclude simple exact expressions for the dilatational, rotational and Rayleigh wave speeds.
Similarly, the parameterization functions occurring in the full-field solutions are similar in form to the
classical (deHoop, 1960) results for linear isotropic elasticity.

In this analysis, the plane strain solutions were formulated in terms of a ratio of stretches induced by pre-
stress, while one of the stretches itself was used for the axially symmetric case. Both quantities can, of
course, be related to the pre-stress; in the plane strain case, explicitly; in the axially symmetric case, as the
root of a fifth-order polynomial. The approach used here allowed both cases to be described with simple
functions of integral powers of the given pre-stress parameter.

In summary, then, both the existence of pre-stress and its type are important in the transient indentation
of hyper-elastic surfaces; in particular, the constraint imposed by plane strain enhances the role of pre-stress
in solution response.
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